Efficacy evaluation of supplementation with an anti-biotoxin solution in dairy cows

Authors : Clarisse Techer, Anne-Laure Tournay and Laurent Drouet. MIXSCIENCE, 2 Avenue de Ker-Lann, 35170 Bruz, France

CONTEXT

Main mycotoxins effects on ruminants have been reported considering high dosage and/or single mycotoxin contamination. However, little is known about the effects of naturally low levels of multiple mycotoxins on the performance, metabolism, and immunity of dairy cattle.

Evaluate the efficacy of an anti-biotoxin product in feed naturally contaminated with mycotoxins on commercial dairy farms.

MATERIALS AND METHODS

120 lactating Holstein dairy cows (West of France, 2019-2020).
Diet supplemented (60 days, 50g/cow/day) with an anti-biotoxin (MPY: Multiprotect Y, Mixscience, France).

• Analysis of mycotoxins and metabolites in Total Mixed Ration (TMR) and urine (HPLC-MS/MS, Labocea, France).

Immunological and blood serum biochemistry (3 groups, Total: 16 cows:

5 primiparous / 6 cows 2nd-3td lactation / 5 cows \geq 4 lactation)

•Zootechnical performance (milk production, 45 animals: average 150 days in milk (DIM)).

RESULTS

Table 2 : Evolution of different biomarkers with MPY

 supplemented diet

		Biomarkers	Evolution after supplementation	
Mycotoxins		DOM-1	↓*	
	Urine	DON	=	
		Tenuazonic acid	=	
Oxydative stress	Blood	PRO/ANTIoxydant	Variable ¹	
Inflammation markers		Haptoglobin	Variable ¹	
	rs Blood	Serum amyloid A (SAA)	Variable ¹	
	BIOOU	Albumin	=	
		lgG	↓*	
Liver functions		ALAT (alanine aminotransferase)	↓*	
		ASAT (aspartate aminotransferase)	=	
	Dlaad	GGT (γ-glutamyl transferase)	=	
	B1000	AP (alkaline phosphatase)	=	
		Urea	↓*	
		Bilirubin (conjugated form)	↓*	
Liver/Kidney functio	ns Blood	Creatinine	↓*	
* <i>p-value<0.05</i> ¹	variability	according to the kinetic times		

 Table 1 : Mycotoxins contamination (mg/kg) in TMR
 Image: TMR

DON	FUMs	ZEA	H-T2	
0.36	0.14	0.02	0.02	

Low but multiple *Fusarium* mycotoxins contamination in the TMR during the whole studied period

Improvement of Liver/kidney functions

Fig. 1. Serum IgG level of dairy cattle before (T0) and after MPY supplementation

Red lines indicate references value from Knapp and Guyot, 2016

Table 3 : Inflammation diagnostic of dairy cattle before (T0) and after MPY supplementation*

	Т0	T15	T30	T45	T60
Total proteins (g/L)	81.8	93.1	76.7	77.3	76.7
Albumin/Globulin	0.80	0.66	0.90	0.88	0.92
Inflammation diagnostic*	Chronic	Chronic	Healthy	Healthy	Healthy

Fig. 2. Milk Production (Kg/Day) before (Oct)/during (Nov-Dec)/ After (Jan) supplementation

Considering milk production persistency at 96.8% → calculated gain of 0.9 Kg milk/cow/day with supplemented diet

*According to Knapp and Guyot, 2016

Improvement of immunity and animal health status

CONCLUSIONS

 Feed contaminated with regular levels of *Fusarium* mycotoxins can adversely affect the performance and immunity of dairy cows.

Supplementation with anti-biotoxin product (MPY) improves immunity, sanitary status of animals and zootechnical performances.